Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 790
Filtrar
1.
J Control Release ; 364: 1-11, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858626

RESUMO

Exacerbated inflammatory responses can be detrimental and pose fatal threats to the host, as exemplified by the global impact of the COVID-19 pandemic, resulting in millions of fatalities. Developing novel drugs to combat the damaging effects of inflammation is essential for both preventive measures and therapeutic interventions. Accumulating evidence suggests that Angiotensin Converting Enzyme 2 (ACE2) possesses the ability to optimize inflammatory responses. However, the clinical applicability of this potential is limited due to the lack of dependable ACE2 activators. In this study, we conducted a screening of an FDA-approved drug library and successfully identified a novel ACE2 activator, termed H4. The activator demonstrated the capability to mitigate lung inflammation caused by bacterial lung infections, effectively modulating neutrophil infiltration. Importantly, to improve the clinical applicability of the poorly water-soluble H4, we developed a prodrug variant with significantly enhanced water solubility while maintaining a similar level of efficacy as H4 in attenuating inflammatory responses in the lungs of mice exposed to bacterial infections. This finding highlights the potential of formulated H4 as a promising candidate for the treatment and prevention of inflammatory diseases, including lung-related conditions.


Assuntos
Infecções Bacterianas , Pneumopatias , Pneumonia , Pró-Fármacos , Humanos , Camundongos , Animais , Enzima de Conversão de Angiotensina 2 , Pró-Fármacos/uso terapêutico , Peptidil Dipeptidase A/fisiologia , Pandemias , Pneumonia/tratamento farmacológico , Pulmão , Água
2.
Hum Fertil (Camb) ; 26(4): 778-796, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37811836

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious disease affecting multiple systems and organs, including the reproductive system. SARS-CoV-2, the virus that causes COVID-19, can damage reproductive organs through direct (angiotensin converting enzyme-2, ACE-2) and indirect mechanisms. The immune system plays an essential role in the homeostasis and function of the male and female reproductive systems. Therefore, an altered immune response related to infectious and inflammatory diseases can affect reproductive function and fertility in both males and females. This narrative review discussed the dysregulation of innate and adaptive systems induced by SARS-CoV-2 infection. We reviewed the evidence showing that this altered immune response in COVID-19 patients is the major indirect mechanism leading to adverse reproduction outcomes in these patients. We summarized studies reporting the long-term effect of SARS-CoV-2 infection on women's reproductive function and proposed the chronic inflammation and chronic autoimmunity characterizing long COVID as potential underlying mechanisms. Further studies are needed to clarify the role of autoimmunity and chronic inflammation (long COVID) in altered female reproduction function in COVID-19.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda , Peptidil Dipeptidase A/fisiologia , Inflamação , Imunidade
3.
Circ Res ; 132(10): 1320-1337, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167353

RESUMO

The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.


Assuntos
COVID-19 , Sistema Renina-Angiotensina , Humanos , Masculino , Feminino , Sistema Renina-Angiotensina/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/fisiologia , SARS-CoV-2 , Caracteres Sexuais , Síndrome Pós-COVID-19 Aguda , Inibidores da Enzima Conversora de Angiotensina/farmacologia
4.
Arch Gynecol Obstet ; 308(6): 1691-1696, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36856820

RESUMO

PURPOSE: The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed a heavy burden on medical systems. In addition to the respiratory system, the virus also causes injuries to other organs and systems such as the gastroenteric system, kidneys, and reproductive system. Female reproductive health requires more attention in this context. METHODS: We have performed a thorough review of the relevant literature that addresses the impacts of SARS-CoV-2 infection and COVID-19 vaccination on the female reproductive system. RESULTS: Most evidence shows that SARS-CoV-2 does not infect the female reproductive system. However, the virus may indirectly influence sex hormone concentrations through inflammation associated with cytokine storms and nervous system damage. Menstrual disorders in women infected with SARS-CoV-2 may be caused by down-regulation of angiotensin-converting enzyme 2, abnormal hormone levels, medications, and stress. There is no significant difference in ovarian follicle quality and in vitro fertilization parameters between the pre- and post-COVID-19 vaccination groups. In addition, most symptoms due to side effects of vaccination could recover within a short period of time. CONCLUSION: SARS-CoV-2 infection affects female reproductive system function through multiple mechanisms. It is recommended that women of childbearing age be vaccinated with COVID-19 vaccine.


Assuntos
COVID-19 , Feminino , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Vacinas contra COVID-19 , Saúde Reprodutiva , Peptidil Dipeptidase A/fisiologia
5.
Biomol Biomed ; 23(1): 37-52, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36124445

RESUMO

The SARS-CoV-2 infection causes COVID-19, which has affected approximately six hundred million people globally as of August 2022. Organs and cells harboring angiotensin-converting enzyme 2 (ACE2) surface receptors are the primary targets of the virus. However, once it enters the body through the respiratory system, the virus can spread hematogenously to infect other body organs. Therefore, COVID-19 affects many organs, causing severe and long-term complications, even after the disease has ended, thus worsening the quality of life. Although it is known that the respiratory system is most affected by the SARS-CoV-2 infection, many organs/systems are affected in the short and long term. Since the COVID-19 disease simultaneously affects many organs, redesigning diagnostic and therapy policies to fit the damaged organs is strongly recommended. Even though the pathophysiology of many problems the infection causes is unknown, the frequency of COVID-19 cases rises with age and the existence of preexisting symptoms. This study aims to update our knowledge of SARS-CoV-2 infection and multi-organ dysfunction interaction based on clinical and theoretical evidence. For this purpose, the study comprehensively elucidates the most recent studies on the effects of SARS-CoV-2 infection on multiple organs and systems, including respiratory, cardiovascular, gastrointestinal, renal, nervous, endocrine, reproductive, immune, and parts of the integumentary system. Understanding the range of atypical COVID-19 symptoms could improve disease surveillance, limit transmission, and avoid additional multi-organ-system problems.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Peptidil Dipeptidase A/fisiologia , Qualidade de Vida
6.
Int J Infect Dis ; 126: 125-131, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403817

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), has recently posed a threat to global health by spreading at a high rate and taking millions of lives worldwide. Along with the respiratory symptoms, there are gastrointestinal manifestations and one of the most common gastrointestinal symptoms is diarrhea which is seen in a significant percentage of COVID-19 patients. LITERATURE REVIEW: Several studies have shown the plausible correlation between overexpressed angiotensin converting enzyme 2 (ACE2) in enterocytes and SARS-CoV-2, as ACE2 is the only known receptor for the virus entry. Along with the dysregulated ACE2, there are other contributing factors such as gut microbiome dysbiosis, adverse effects of antiviral and antibiotics for treating infections and inflammatory response to SARS-CoV-2 which bring about increased permeability of gut cells and subsequent occurrence of diarrhea. Few studies found that the SARS-CoV-2 is capable of damaging liver cells too. No single effective treatment option is available. LIMITATIONS: Confirmed pathophysiology is still unavailable. Studies regarding global population are also insufficient. CONCLUSION: In this review, based on the previous works and literature, we summarized the putative molecular pathophysiology of COVID-19 associated diarrhea, concomitant complications and the standard practices of management of diarrhea and hepatic manifestations in international setups.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/fisiologia , Diarreia/tratamento farmacológico , Diarreia/etiologia
7.
Biosensors (Basel) ; 12(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36354493

RESUMO

Rapid and cost-effective diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a critical and valuable weapon for the coronavirus disease 2019 (COVID-19) pandemic response. SARS-CoV-2 invasion is primarily mediated by human angiotensin-converting enzyme 2 (hACE2). Recent developments in ACE2-based SARS-CoV-2 detection modalities accentuate the potential of this natural host-virus interaction for developing point-of-care (POC) COVID-19 diagnostic systems. Although research on harnessing ACE2 for SARS-CoV-2 detection is in its infancy, some interesting biosensing devices have been developed, showing the commercial viability of this intriguing new approach. The exquisite performance of the reported ACE2-based COVID-19 biosensors provides opportunities for researchers to develop rapid detection tools suitable for virus detection at points of entry, workplaces, or congregate scenarios in order to effectively implement pandemic control and management plans. However, to be considered as an emerging approach, the rationale for ACE2-based biosensing needs to be critically and comprehensively surveyed and discussed. Herein, we review the recent status of ACE2-based detection methods, the signal transduction principles in ACE2 biosensors and the development trend in the future. We discuss the challenges to development of ACE2-biosensors and delineate prospects for their use, along with recommended solutions and suggestions.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Peptidil Dipeptidase A/fisiologia , Pandemias
8.
Commun Biol ; 5(1): 651, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778545

RESUMO

Angiotensin-converting enzyme 2 (ACE2) has been identified as a primary receptor for severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2). Here, we investigated the expression regulation of ACE2 in enterocytes under amino acid deprivation conditions. In this study, we found that ACE2 expression was upregulated upon all or single essential amino acid deprivation in human colonic epithelial CCD841 cells. Furthermore, we found that knockdown of general control nonderepressible 2 (GCN2) reduced intestinal ACE2 mRNA and protein levels in vitro and in vivo. Consistently, we revealed two GCN2 inhibitors, GCN2iB and GCN2-IN-1, downregulated ACE2 protein expression in CCD841 cells. Moreover, we found that increased ACE2 expression in response to leucine deprivation was GCN2 dependent. Through RNA-sequencing analysis, we identified two transcription factors, MAFB and MAFF, positively regulated ACE2 expression under leucine deprivation in CCD841 cells. These findings demonstrate that amino acid deficiency increases ACE2 expression and thereby likely aggravates intestinal SARS-CoV-2 infection.


Assuntos
Aminoácidos , Enzima de Conversão de Angiotensina 2 , COVID-19 , Enterócitos , Proteínas Serina-Treonina Quinases , Aminoácidos/deficiência , Aminoácidos/metabolismo , Enzima de Conversão de Angiotensina 2/biossíntese , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , COVID-19/genética , COVID-19/virologia , Enterócitos/enzimologia , Enterócitos/metabolismo , Humanos , Leucina/farmacologia , Peptidil Dipeptidase A/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/metabolismo
9.
Mol Pain ; 18: 17448069221080305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189759

RESUMO

Nervous system manifestations caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of great concern. Neurological symptoms and the neurological effects induced by SARS-CoV-2, such as the loss of various sensory perceptions, indicate direct viral invasion into sensory neurons. Therefore, it is very important to identify the distribution of angiotensin-converting enzyme 2 (ACE2), the receptor of SARS-CoV-2, in human nervous system. However, autofluorescence from lipofuscin obviously impacted immunofluorescence analysis in previous studies. We demonstrated that Sudan Black B (SBB) remarkably reduced the massive lipofuscin-like autofluorescence and the immunofluorescence signal would be sharpened following the exposure compensation. Additionally, we confirmed that ACE2 was expressed in IB4+, CGRP+, and NF200+ sensory subpopulations. The mapping of ACE2 distribution in hDRG would facilitate the understanding of sensory disorder induced by SARS-CoV-2.


Assuntos
COVID-19 , Peptidil Dipeptidase A , Angiotensinas , Compostos Azo , Humanos , Naftalenos , Nociceptores , Peptidil Dipeptidase A/fisiologia , SARS-CoV-2
10.
Clin Chim Acta ; 524: 113-122, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728179

RESUMO

BACKGROUND: Angiotensin converting enzyme (ACE) was isolated as a 'hypertensinconverting enzyme'. There have been considerable advances in understanding the metabolic role of ACE in the body. This review attempts to highlight the role of ACE enzyme in the physiological and pathological processes occurring in the organs in which it is localized. METHODS: The literature was searched from the websites of the National Library of Medicine (http://www.ncbi.nlm.nih.gov/) and Pub Med Central, the U.S. National Library of Medicine's digital archive of life sciences journal literature. RESULTS: The involvement of ACE in regulation of blood pressure forms its central action but it has a role to play in a variety of physiological processes occurring in the organs in which it is localized like the lungs, macrophages, brain, pancreas, liver etc. It has also been implicated in the pathogenesis of a number of diseases including COVID-19. CONCLUSIONS: More studies need to be carried out in order to validate the use of ACE levels in the diagnosis and monitoring of the diseases associated, and facilitate the use of ACE inhibitors and Angiotensin Receptor Blockers in the management of the same, so this wonder molecule can be utilized to its full potential.


Assuntos
Peptidil Dipeptidase A , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Pressão Sanguínea , Encéfalo/metabolismo , COVID-19 , Humanos , Peptidil Dipeptidase A/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-33583391

RESUMO

Angiotensin-converting enzyme (ACE) is a zinc-dependent dicarboxypeptidase with two catalytic components, which has an important role in regulating blood pressure by converting angiotensin I to angiotensin II. ACE breaks down other peptides besides angiotensin I and has a variety of physiological effects together with renal growth and reproduction in men. ACE also acts on innate and acquired immune systems by affecting macrophage and neutrophil function, and these outcomes are exacerbated due to the overexpression of ACE. Overexpression of ACE in macrophages imposes antitumor and antimicrobial response, and it enhances the ability of neutrophils to produced super peroxide that has a bactericidal effect. ACE is also known to contribute to the expression of Major Histocompatibility Complex (MHC) class I and MHC class II peptides through enzymatic alterations of these peptides. Apprehending the expression of ACE and its effects on myeloid cell (myelogenous cells) activity can be promising in therapeutic interventions, including treatment of infection and malignancy.


Assuntos
Imunidade/genética , Peptidil Dipeptidase A/fisiologia , Angiotensinas/metabolismo , Angiotensinas/fisiologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/fisiologia , Feminino , Antígenos de Histocompatibilidade Classe I/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Humanos , Imunidade/fisiologia , Infecções/genética , Infecções/imunologia , Infecções/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Peptidil Dipeptidase A/genética
12.
Front Endocrinol (Lausanne) ; 12: 725967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745001

RESUMO

The renin-angiotensin system (RAS) is crucially involved in the physiology and pathology of all organs in mammals. Angiotensin-converting enzyme 2 (ACE2), which is a homolog of ACE, acts as a negative regulator in the homeostasis of RAS. ACE2 has been proven to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic. As SARS-CoV-2 enters the host cells through binding of viral spike protein with ACE2 in humans, the distribution and expression level of ACE2 may be critical for SARS-CoV-2 infection. Growing evidence shows the implication of ACE2 in pathological progression in tissue injury and several chronic conditions such as hypertension, diabetes, and cardiovascular disease; this suggests that ACE2 is essential in the progression and clinical prognosis of COVID-19 as well. Therefore, we summarized the expression and activity of ACE2 under various conditions and regulators. We further discussed its potential implication in susceptibility to COVID-19 and its potential for being a therapeutic target in COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/prevenção & controle , Peptidil Dipeptidase A/fisiologia , Sistema Renina-Angiotensina/fisiologia , COVID-19/epidemiologia , Humanos , Terapia de Alvo Molecular , Pandemias , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
13.
Ann Biomed Eng ; 49(12): 3550-3562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704164

RESUMO

The renin-angiotensin system (RAS) is activated in aortic valve disease, yet little is understood about how it affects the acute functional response of valve interstitial cells (VICs). Herein, we developed a gelatin-based valve thin film (vTF) platform to investigate whether the contractile response of VICs can be regulated via RAS mediators and inhibitors. First, the impact of culture medium (quiescent, activated, and osteogenic medium) on VIC phenotype and function was assessed. Contractility of VICs was measured upon treatment with angiotensin I (Ang I), angiotensin II (Ang II), angiotensin-converting enzyme (ACE) inhibitor, and Angiotensin II type 1 receptor (AT1R) inhibitor. Anisotropic cell alignment on gelatin vTF was achieved independent of culture conditions. Cells cultured in activated and osteogenic conditions were found to be more elongated than in quiescent medium. Increased α-SMA expression was observed in activated medium and no RUNX2 expression were observed in cells. VIC contractile stress increased with increasing concentrations (from 10-10 to 10-6 M) of Ang I and Ang II. Moreover, cell contraction was significantly reduced in all ACE and AT1R inhibitor-treated groups. Together, these findings suggest that local RAS is active in VICs, and our vTF may provide a powerful platform for valve drug screening and development.


Assuntos
Valva Aórtica/citologia , Sistema Renina-Angiotensina/fisiologia , Angiotensina I/farmacologia , Angiotensina I/fisiologia , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Valva Aórtica/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Losartan/farmacologia , Miofibroblastos/fisiologia , Peptidil Dipeptidase A/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Suínos , Tetra-Hidroisoquinolinas/farmacologia
14.
Acta Diabetol ; 58(7): 831-843, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33587177

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a pandemic. The cellular receptor for SARS-CoV-2 entry is the angiotensin-converting enzyme 2, a membrane-bound homolog of angiotensin-converting enzyme. Henceforth, this has brought the attention of the scientific community to study the interaction between COVID-19 and the renin-angiotensin system (RAS), as well as RAS inhibitors. However, these inhibitors are commonly used to treat hypertension, chronic kidney disorder, and diabetes. Obesity is a known risk factor for heart disease, diabetes, and hypertension, whereas diabetes and hypertension may be indirectly related to each other through the effects of obesity. Furthermore, people with hypertension, obesity, diabetes, and other related complications like cardiovascular and kidney diseases have a higher risk of severe COVID-19 infection than the general population and usually exhibit poor prognosis. This severity could be due to systemic inflammation and compromised immune response and RAS associated with these comorbid conditions. Therefore, there is an urgent need to develop evidence-based treatment methods that do not affect the severity of COVID-19 infection and effectively manage these chronic diseases in people with COVID-19.


Assuntos
COVID-19/mortalidade , Diabetes Mellitus/epidemiologia , Hipertensão/epidemiologia , Obesidade/epidemiologia , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , COVID-19/complicações , COVID-19/epidemiologia , Comorbidade , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/mortalidade , Diabetes Mellitus/tratamento farmacológico , Progressão da Doença , Cardiopatias/complicações , Cardiopatias/tratamento farmacológico , Cardiopatias/epidemiologia , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Obesidade/complicações , Pandemias , Peptidil Dipeptidase A/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Fatores de Risco , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia
15.
J Diabetes Res ; 2020: 8205261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134395

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to cause havoc to many countries of the globe, with no end in sight, due to nonavailability of a given vaccine or treatment regimen. The pandemic has so far had a relatively limited impact on the African continent, which contributes more than 93% of global malaria burden. However, the limited burden of COVID-19 pandemic on the African region could have long-term implications on the health and wellbeing of affected inhabitants due to its malaria-endemic status. Malaria causes recurrent insulin resistance with episodes of infection at relatively low parasitaemia. Angiotensin-converting enzyme 2 (ACE2) which is widely distributed in the human body is implicated in the pathogenesis of malaria, type 2 diabetes mellitus (T2DM), and COVID-19. Use of ACE2 by the COVID-19 virus induces inflammation and oxidative stress, which can lead to insulin resistance. Although COVID-19 patients in malaria-endemic African region may not exhibit severe signs and symptoms of the disease, their risk of exhibiting heightened insulin resistance and possible future development of T2DM is high due to their prior exposure to malaria. African governments must double efforts at containing the continued spread of the virus without neglecting existing malarial control measures if the region is to avert the plausible long-term impact of the pandemic in terms of future development of T2DM.


Assuntos
Infecções por Coronavirus/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/patologia , Doenças Endêmicas , Malária/epidemiologia , Pneumonia Viral/epidemiologia , África/epidemiologia , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/complicações , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Humanos , Resistência à Insulina/fisiologia , Malária/complicações , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/complicações , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/patologia , Estado Pré-Diabético/virologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2
16.
Biomed Pharmacother ; 131: 110748, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152916

RESUMO

The severe form of COVID-19 has significant sex disparities, with high fatalities commonly reported among males than females. The incidence of COVID-19 has also been higher in males compared with their female counterparts. This trend could be attributed to a better responsive and robust immune system in females. Cytokine storm is one of the pathophysiological features of severe COVID-19, and it occurs as a result of over-activation of immune cells leading to severe inflammation and tissue damage. Nevertheless, it is well modulated in females compared to their male counterparts. Severe inflammation in males is reported to facilitate progression of mild to severe COVID-19. The sex hormones, estrogens and androgens which exist in varying functional levels respectively in females and males are cited as the underlying cause for the differential immune response to COVID-19. Evidence abounds that estrogen modulate the immune system to protect females from severe inflammation and for that matter severe COVID-19. On the contrary, androgen has been implicated in over-activation of immune cells, cytokine storm and the attendant severe inflammation, which perhaps predispose males to severe COVID-19. In this review efforts are made to expand understanding and explain the possible roles of the immune system, the sex hormones and the angiotensin-converting enzyme (ACE) systems in male bias to severe COVID-19. Also, this review explores possible therapeutic avenues including androgen deprivation therapy (ADT), estrogen-based therapy, and ACE inhibitors for consideration in the fight against COVID-19.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Suscetibilidade a Doenças , Feminino , Hormônios Esteroides Gonadais/fisiologia , Humanos , Imunidade Inata , Lactente , Recém-Nascido , Inflamação , Masculino , Camundongos , Pessoa de Meia-Idade , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , Neoplasias da Próstata/complicações , Neoplasias da Próstata/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Virais/fisiologia , SARS-CoV-2 , Distribuição por Sexo , Fumar/efeitos adversos , Adulto Jovem , Tratamento Farmacológico da COVID-19
17.
Elife ; 92020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164751

RESUMO

Pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 19 disease (COVID-19) which presents a large spectrum of manifestations with fatal outcomes in vulnerable people over 70-years-old and with hypertension, diabetes, obesity, cardiovascular disease, COPD, and smoking status. Knowledge of the entry receptor is key to understand SARS-CoV-2 tropism, transmission and pathogenesis. Early evidence pointed to angiotensin-converting enzyme 2 (ACE2) as SARS-CoV-2 entry receptor. Here, we provide a critical summary of the current knowledge highlighting the limitations and remaining gaps that need to be addressed to fully characterize ACE2 function in SARS-CoV-2 infection and associated pathogenesis. We also discuss ACE2 expression and potential role in the context of comorbidities associated with poor COVID-19 outcomes. Finally, we discuss the potential co-receptors/attachment factors such as neuropilins, heparan sulfate and sialic acids and the putative alternative receptors, such as CD147 and GRP78.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/virologia , Ligação Viral , Enzima de Conversão de Angiotensina 2 , Basigina/fisiologia , COVID-19 , Comorbidade , Infecções por Coronavirus/epidemiologia , Chaperona BiP do Retículo Endoplasmático , Regulação Enzimológica da Expressão Gênica , Heparitina Sulfato/fisiologia , Humanos , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Neuropilina-1/fisiologia , Oligopeptídeos/fisiologia , Especificidade de Órgãos , Pandemias , Pneumonia Viral/epidemiologia , Ligação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Virais , Sistema Renina-Angiotensina/fisiologia , Sistema Respiratório/enzimologia , SARS-CoV-2 , Ácidos Siálicos/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Internalização do Vírus
18.
PLoS One ; 15(10): e0240647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33112891

RESUMO

The World Health Organization declared the COVID-19 epidemic a public health emergency of international concern on March 11th, 2020, and the pandemic is rapidly spreading worldwide. COVID-19 is caused by a novel coronavirus SARS-CoV-2, which enters human target cells via angiotensin converting enzyme 2 (ACE2). We used a number of bioinformatics tools to computationally characterize ACE2 by determining its cell-specific expression in trachea, lung, and small intestine, derive its putative functions, and predict transcriptional regulation. The small intestine expressed higher levels of ACE2 mRNA than any other organ. By immunohistochemistry, duodenum, kidney and testis showed strong signals, whereas the signal was weak in the respiratory tract. Single cell RNA-Seq data from trachea indicated positive signals along the respiratory tract in key protective cell types including club, goblet, proliferating, and ciliary epithelial cells; while in lung the ratio of ACE2-expressing cells was low in all cell types (<2.6%), but was highest in vascular endothelial and goblet cells. Gene ontology analysis suggested that, besides its classical role in the renin-angiotensin system, ACE2 may be functionally associated with angiogenesis/blood vessel morphogenesis. Using a novel tool for the prediction of transcription factor binding sites we identified several putative binding sites within two tissue-specific promoters of the ACE2 gene as well as a new putative short form of ACE2. These include several interferon-stimulated response elements sites for STAT1, IRF8, and IRF9. Our results also confirmed that age and gender play no significant role in the regulation of ACE2 mRNA expression in the lung.


Assuntos
Betacoronavirus/fisiologia , Biologia Computacional , Infecções por Coronavirus/virologia , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/virologia , Receptores Virais/fisiologia , Envelhecimento/metabolismo , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , COVID-19 , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Ontologia Genética , Humanos , Interferons/fisiologia , Pulmão/metabolismo , Masculino , Metaloproteases/biossíntese , Metaloproteases/genética , Neovascularização Fisiológica/fisiologia , Especificidade de Órgãos , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Receptores Virais/biossíntese , Receptores Virais/genética , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Caracteres Sexuais , Análise de Célula Única , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Ligação Viral
19.
Radiographics ; 40(6): 1574-1599, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001783

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in coronavirus disease 2019 (COVID-19), which was declared an official pandemic by the World Health Organization on March 11, 2020. The infection has been reported in most countries around the world. As of August 2020, there have been over 21 million cases of COVID-19 reported worldwide, with over 800 000 COVID-19-associated deaths. It has become apparent that although COVID-19 predominantly affects the respiratory system, many other organ systems can also be involved. Imaging plays an essential role in the diagnosis of all manifestations of the disease, as well as its related complications, and proper utilization and interpretation of imaging examinations is crucial. With the growing global COVID-19 outbreak, a comprehensive understanding of the diagnostic imaging hallmarks, imaging features, multisystemic involvement, and evolution of imaging findings is essential for effective patient management and treatment. To date, only a few articles have been published that comprehensively describe the multisystemic imaging manifestations of COVID-19. The authors provide an inclusive system-by-system image-based review of this life-threatening and rapidly spreading infection. In part 1 of this article, the authors discuss general aspects of the disease, with an emphasis on virology, the pathophysiology of the virus, and clinical presentation of the disease. The key imaging features of the varied pathologic manifestations of this infection that involve the pulmonary and peripheral and central vascular systems are also described. Part 2 will focus on key imaging features of COVID-19 that involve the cardiac, neurologic, abdominal, dermatologic and ocular, and musculoskeletal systems, as well as pediatric and pregnancy-related manifestations of the virus. Vascular complications pertinent to each system will be also be discussed in part 2. Online supplemental material is available for this article. ©RSNA, 2020.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pandemias , Pneumonia Viral/diagnóstico por imagem , Tromboembolia/diagnóstico por imagem , Trombose/diagnóstico por imagem , Angiografia/métodos , Enzima de Conversão de Angiotensina 2 , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/fisiopatologia , Progressão da Doença , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Inflamação , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Artéria Pulmonar/diagnóstico por imagem , Receptores Virais/fisiologia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2 , Avaliação de Sintomas , Tromboembolia/sangue , Tromboembolia/etiologia , Trombose/sangue , Trombose/etiologia , Microangiopatias Trombóticas/diagnóstico por imagem , Microangiopatias Trombóticas/etiologia , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos
20.
J Chin Med Assoc ; 83(10): 895-897, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33009240

RESUMO

An outbreak of pneumonia associated with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019, and has been spread worldwide rapidly now. Over 5.3-million confirmed cases and 340,000 disease-associated deaths have been found till May 25, 2020. The potential pathophysiology for SARS-CoV-2 to affect the target is via the receptor, angiotensin-converting enzyme 2 (ACE2). ACE2 can be found in the respiratory, cardiovascular, gastrointestinal tract, urinary tract, and reproductive organs such as human ovaries and Leydig cells in the testis. This receptor plays a dominant role in the fertility function. Considering the crucial roles of testicular cells of the male reproductive system, increasing numbers of studies focus on the effects of SARS-CoV-2 on the testis. In this literature, we reviewed several studies to evaluate the relevance between SARS-CoV-2, ACE receptor, and female and male reproductive system and found that the risk of being attacked by SARS-CoV-2 is higher in males than in females. Since men infected with SARS-CoV-2 virus may have the risk of impaired reproductive performance, such as the orchitis and an elevated of luteinizing hormone (LH), and additionally, SARS-CoV-2 virus may be found in semen, although the latter is still debated, all suggest that we should pay much attention to sexual transmitted disease and male fertility after recovering from COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Genitália/virologia , Pneumonia Viral/complicações , Enzima de Conversão de Angiotensina 2 , COVID-19 , Feminino , Fertilidade , Humanos , Masculino , Pandemias , Peptidil Dipeptidase A/fisiologia , SARS-CoV-2 , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...